
Media
Computing
Group

iPhone Application Programming
Lecture 4: Foundation Classes and Design

Patterns
Nur Al-huda Hamdan

Media Computing Group
RWTH Aachen University

Winter Semester 2015/2016

http://hci.rwth-aachen.de/iphone

http://hci.rwth-aachen.de/iphone

Media
Computing
GroupiPhone Application Programming

• Warp up swift: “easy to learn, hard to master”

• Enumeration, error handling and ARC

• Cocoa Touch

• Concurrency programming

• Foundation classes

• MVC

• Notifications, KVO, target-action

2

Learning Objectives

Media
Computing
GroupiPhone Application Programming

• Swift’s six built-in types

3

Swift Built-in Types

✓ Protocols

✓ Structs

✓ Classes

• Enumerations

✓ Functions

✓ Tuples

Named Types Compound Types

Media
Computing
GroupiPhone Application Programming4

Enumerations

• Represent a finite number of states

• There are two distinct types of enumerations in Swift

• Raw value enumerations

• Similar to Java or C enumerations

• Associated value enumerations

• Similar to tagged unions (e.g. in Haskell)

Media
Computing
GroupiPhone Application Programming5

Raw Value Enumerations

• Much more powerful than C enumerations

• Can have methods and initializers, can
have extensions and can conform to
protocols

• More flexible than Java enumerations

• Can be defined over other underlying
types (String, Character, all numeric types)

enum TrainClass: String, Stringifyable {
 case S = "S-Bahn"
 case RB = "Regionalbahn"
 case RE = "Regional-Express"
 case IC = "Intercity"
 case ICE = "Intercity Express"
 static let allCases = [S, RB, RE, IC, ICE]

 func onTime() -> Bool {
 if self == .S || self == .ICE {
 return true
 }
 return false
 }

 func stringify() -> String {
 return self.rawValue
 }
}

Media
Computing
GroupiPhone Application Programming

• Every case represents a tuple type

• Can be used as simple static Polymorphism

• Instantiate cases with values of the
represented type

• You can mix the two enumeration types

6

Associated Value Enumerations
enum Transport {
 case plane(String, Int)
 case train(TrainClass, Int)
 case bus(Int)
 case car(String, String, Int)
}

var myRide = Transport.train(.ICE, 11)
// GDL strike: change travel plans!
myRide = .car("AC", "X", 1337)

func canWork(onRide: Transport) -> Bool {
 switch onRide {
 case .train(let trainClass, let number):
 return trainClass == .ICE
 case .plane(_, _):
 return true
 default:
 return false
 }
}

Media
Computing
GroupiPhone Application Programming

• Can extend Structs, Classes,
Enumerations

• Can implement protocol requirements

• Can add functions, computed properties,
nested types

• Can declare protocol conformance

• Cannot override existing functionality

• Often useful to clean up code structure

7

Extensions

extension Temperature : CustomStringConvertible {
 var description : String {
 get {
 return (NSString(format:"%.2d", self.value) as
String) + self.unit.rawValue
 }
 }
}

Media
Computing
GroupiPhone Application Programming

• Nest enums, classes, and structs within the
definition of a type

• Can have deep hierarchies

• To use a nested type outside definition
scope, prefix its name with the name of
the type(s) it is nested within

8

Nested Types
struct BlackjackCard {
 // nested Rank enumeration
 enum Rank: Int {
 case Two = 2, Three, Four, Five, Six, Seven, Eight,
Nine, Ten
 case Jack, Queen, King, Ace
 // nested Values structure
 struct Values {
 let first: Int, second: Int?
 }
 // computed property
 var values: Values {
 switch self {
 case .Ace:
 return Values(first: 1, second: 11)
 case .Jack, .Queen, .King:
 return Values(first: 10, second: nil)
 default:
 return Values(first: self.rawValue, second: nil)
 }
 }
 }
}

let c1 = BlackjackCard.Rank.Three.rawValue
let c2 = BlackjackCard.Rank.Ace.values.second
//Three deep
let newCard = BlackjackCard.Rank.Values(first: 10, second: nil)

Media
Computing
GroupiPhone Application Programming

• Accessing properties/methods on optionals

• If one of the optionals is nil, this syntax fails
graceful (no run time error)

• If all optionals are set, the chain returns an
optional (even if the object in request, e.g.,
subviews, is not optional)

• self.window?.rootViewController?.view.subviews!
//compiler error, subviews is not of type optional

• With subscripts dict?[someKey]

9

Optional Chaining
for subview in
(self.window?.rootViewController?.view.subviews)!
as [UIView]
{

 //type casting the subview to UILable
 if let labelView = subview as? UILabel

 {
 let formatter = NSDateFormatter()
 formatter.timeStyle = .MediumStyle
 labelView.text =
formatter.stringFromDate(NSDate())
 }
}

var dict:[String:String]?
dict?[someKey]

var someArray:[String]?
someArray?.insert(someValue, atIndex: someIndex)

//side notes
var dict:[String:String?]
dict = ["hi":"there", "bye":nil]
dict["hi"] // "there"
dict["bye"] // nil

var dict:[String?:String] //error keys cannot be optional

Media
Computing
GroupiPhone Application Programming

• Upcasting: casts an instance to its superclass type

• instance as superclass (assumes it is always successful)

• 0.1 as Int //0 and 0.1 as Double //0.1

• Downcasting: casts an instance of a superclass to its actual subclass type

• let object = instance as! subclass. Results in downcasts + force unwarp OR runtime error

• if let object = instance as? subclass {…}. Results in downcasts or nil

• Object checking: checks if instance is of type subclass

• instance is subclass //true or false

10

Type Casting

Media
Computing
GroupiPhone Application Programming

• private entities are available only from within the source file where they are defined

• internal entities are available to the entire module that includes the definition (e.g. an
app or framework target) ← the default case

• public entities are intended for use as API, and can be accessed by any file that imports
the module, e.g. as a framework used in several of your projects

• Apply to classes, structures, and enumerations, properties, methods, initializers, and
subscripts

• Global constants, variables, functions, and protocols can be restricted to a certain context

11

Access Control

Media
Computing
GroupiPhone Application Programming

• Operators can be declared at global
scope

• Can have prefix, infix or postfix
modifiers

• Infix operators have associativity and
precedence values

• Operators are implemented as
functions at global scope

• Be very conservative when overloading
operators!

12

Custom Operators
// ...this one maybe makes sense...
prefix operator ∑ {}
prefix func ∑(a: [Int]) -> Int {
 var accum = 0
 for value in a {
 accum += value
 }
 return accum
}
var myArray = [-2, 6, 0, 1]
let sum = ∑myArray

// ...this one surely not!
postfix operator ^-^ {}
postfix func ^-^(s: String) -> String {
 return s + " !"
}
let chatMessage = "Operator Overloading 4TW!"
print(chatMessage^-^)

Media
Computing
GroupiPhone Application Programming

• Errors values are of types that conform to the empty
protocol ErrorType. The protocol indicates that a type can
be used for error handling

• func canThrowErrors() throws -> Type to indicate the
function throws errors

• Use throw someErrorOfErrorType (usually enums) to
indicate an error

• Errors thrown inside a nonthrowing function must be
handled inside the function

• Errors thrown inside a throwing function can propagate to
the scope from which they were called

13

Error Handling

enum VendingMachineError: ErrorType {
 case InvalidSelection
 case InsufficientFunds(coinsNeeded: Int)
 case OutOfStock
}

throw
VendingMachineError.InsufficientFunds
(coinsNeeded: 5)

Media
Computing
GroupiPhone Application Programming

• do-try-catch: When working with code that can throw errors, surround it with a do, call it with a
try and handle it in one or more catch clauses

• Write a pattern after catch to indicate what errors to handle, or no pattern to handle all
errors

• If errors are not handled in your catches or the surrounding scope, then runtime error

• try?: Convert an error to optional

• if let x = try? someThrowingFunction() { return data } return nil // x is optional. It is either set
with returned value or in case of errors it’s nil

• try!: The error will not occur (or you’ll get runtime error)

• let x = try! someThrowingFunction()

14

Error Handling Techniques

Media
Computing
GroupiPhone Application Programming

• ARC automatically frees up the memory used by class
instances no longer needed

• ARC tracks how many properties, constants, and
variables are currently referring to each class instance
and deallocates the instance only if no active
references exists

• Strong reference cycles prevent referencing instances
from ever being deallocated, causing a memory leak

• Use a (var) weak reference if that reference can
ever be “no value”, i.e., optional

• For non optional references, use unowned

15

Automatic Reference Counting
Game

self.player = Ninja()
Ninja

self.activity = Game()

Game
self.player = Ninja()

Ninja
self.activity = Game()

Ref A Ref B Solution

optional optional make one var weak optional

optional non
optional unowned the non optional

non
optional

non
optional

unowned one and make the other
implicitly unwrapped !

Media
Computing
GroupiPhone Application Programming

• If a closure is called within a class instance and you use self.someProperty or
self.someMethod() in the closure, self is then captured and a strong reference cycle is
created

• Resolved with capture lists or unowned and weak references/variables

16

Strong Reference Cycles in Closures

let alterAction = UIAlertAction(title: "Submit", style: .Default)
{ [unowned self] (action: UIAlertAction!) in
 self.doSomething()
}

Media
Computing
GroupiPhone Application Programming

• Because of bridging, we see AnyObject and Any types
when using Cocoa APIs

• In objective-c an array can contain heterogeneous
types, in swift only homogenous

• Swift provides two special type aliases for working with
non-specific types:

• AnyObject can represent an instance of any class
type.

• Any can represent an instance of any type at all,
including function types.

• Int, Double, Float, String, Array, and Dictionary are
not objects

17

Any and AnyObject
typealias funcDef = (Double) -> (Double)

var hetroArray1 = ["hello", 1, 0.1, true]//[NSObject]

var hetroArray2 = [AnyObject]()
hetroArray2.append(NSData())

var hetroArray3 = [Any]()
hetroArray3.append(hetroArray1)
hetroArray3.append(hetroArray2)
hetroArray3.append(funcDef)

Media
Computing
GroupiPhone Application Programming

• To check for conditions early in your code

• Assert: continue, crash (if in debug mode),
or ignore (if in release mode)

• Guard: continue, or execute exit code
gracefully

• The nil-coalescing operator a ?? b

• a != nil ? a! : b returns a unwrapped if not
nil or b

• //MARK: Some Section Name

• To mark sections of code in the symbol
navigator

18

Wrapping Up Swift

//Else code is executed if the condition fails. It must be
followed by return, break, continue or throw
guard let unwarpData = data where unwarpData.length > 0
else
{
 print("no data, will exit!")
 return //break or continue or throw
}
print("data arrived \(unwarpData)")

var data:NSData? =
"text".dataUsingEncoding(NSUTF8StringEncoding)

//Msg is printed and program crushes if the condition fails
assert(data?.length > 0, "no data, will exit!")

Media
Computing
GroupiPhone Application Programming

Cocoa Touch

19

Media
Computing
GroupiPhone Application Programming

• Numeric types: NSNumber

• Other types: NSValue

• Binary data: NSData. Used to read and write files

• NSString bridged to String comes with many methods
to search and manipulate strings

• NSDate, NSDateFormatter and NSCalendar

20

Foundation Classes
let startOfHolidayComponents =
NSDateComponents()
startOfHolidayComponents.year = 2015
startOfHolidayComponents.month = 12
startOfHolidayComponents.day = 23
startOfHolidayComponents.hour = 8
startOfHolidayComponents.minute = 0
startOfHolidayComponents.second = 0

let startOfHoliday =
NSCalendar.currentCalendar().dateFromCompon
ents(startOfHolidayComponents)!

let formatter = NSDateFormatter()
formatter.dateStyle =
NSDateFormatterStyle.LongStyle
formatter.timeStyle = .MediumStyle

formatter.stringFromDate(startOfHoliday)
//December 23, 2015 at 8:00:00 AM

Media
Computing
GroupiPhone Application Programming

• Encapsulation of numerical values

• Provides compare: method to determine the ordering of two NSNumbers

21

NSNumber

+ numberWithBool:
+ numberWithChar:
+ numberWithDouble:
+ numberWithFloat:
+ numberWithInt:
+ numberWithInteger:
+ numberWithLong:
+ numberWithShort:
+ numberWithUnsignedChar:
+ numberWithUnsignedInt:
+ numberWithUnsignedInteger:
+ numberWithUnsignedLong:
+ numberWithUnsignedLongLong:
+ numberWithUnsignedShort:

– boolValue
– charValue
– doubleValue
– floatValue
– intValue
– integerValue
– longValue
– shortValue
– unsignedCharValue
– unsignedIntegerValue
– unsignedIntValue
– unsignedLongLongValue
– unsignedLongValue
– unsignedShortValue

Media
Computing
GroupiPhone Application Programming

• Bundles encapsulate code and resources, and facilitate localization. Each bundle type has a
defined structure

• An app bundle (.app) is a directory containing: the binary file (compiled version of your
code), Info.plist, all the media assets of the app (e.g., icon and launch images), visual layout
files, and metadata and security entitlements

• NSBundle.mainBundle() is where your resources reside. Use paths to access files in a bundle

22

Bundels

imageView.image = UIImage(named: “1.jpg") //no need to reference NSBundle

let targetPath1 : String? = NSBundle.mainBundle().pathForResource("1", ofType:
"jpg")
let targetPath2 = NSBundle.mainBundle().pathForResource("2", ofType: "jpg",
inDirectory: "images")
let targetPath3 = NSBundle.mainBundle().pathForResource("3", ofType: "jpg",
inDirectory: "images/impo images")
imageView.image = UIImage(named: targetPath2!) //targetPath1, targetPath3

The app bundle is read-only!

Media
Computing
GroupiPhone Application Programming

• Property Lists offer a convenient way to store and
retrieve simple structural data: basic types, binary data,
date, and collections of allowed types

• Used to store small amounts of data few 100 KB. Mainly
for app settings and app default data

• Can be directly read into a dictionary or array

23

Property Lists (plist)

key - type - value

//From app bundle
let path = NSBundle.mainBundle().pathForResource("Defaults", ofType: “plist”)!
var resultDictionary = NSMutableDictionary(contentsOfFile: path) //optional

//From documents directory
let documentsDirectory = NSSearchPathForDirectoriesInDomains(.DocumentDirectory, .UserDomainMask, true)
[0]
let path = documentsDirectory.stringByAppendingString("Defaults.plist")
let fileManager = NSFileManager.defaultManager()
if(fileManager.fileExistsAtPath(path)) {resultDictionary = NSMutableDictionary(contentsOfFile: path)}

Media
Computing
GroupiPhone Application Programming

• NSFileManager object lets you examine the contents of the file system and make changes to it

• Access files using their path = documents directory + unique file name with file extension (or UUID)

• More details in the Data Persistence lecture…

24

File Manager

let path:String? = NSBundle.mainBundle().resourcePath! //all files (not embedded in folders) in the app
bundle
let fileManager = NSFileManager.defaultManager()

let items = try! fileManager.contentsOfDirectoryAtPath(path) //array of all files in path

//Read from documents directory any file extension
let documentsDirectory =
NSSearchPathForDirectoriesInDomains(.DocumentDirectory, .UserDomainMask, true)[0]
let documentPath = documentsDirectory.stringByAppendingString(“Defaults.plist”)
let fileManager = NSFileManager.defaultManager()
if(fileManager.fileExistsAtPath(documentPath)) {resultDictionary =
NSMutableDictionary(contentsOfFile: documentPath)}
//Write to documents directory
resultDictionary!.writeToFile(documentPath, atomically: false)

Media
Computing
GroupiPhone Application Programming

• Asset Catalogs provide an optimised way of importing and using images in iOS project

• App icons, launch image, image sets, other data files (not binary executables)

• Can access files in code by name directly

• Assets image sets come in the sizes 1x, 2x and 3x

• A 1x image is just called its regular name, e.g., contactImage.png, contactImage@2x.png, (retina
devices) contactImage@3x.png (retina HD devices). In code you only use contactImage.png and
the system chooses the right image for the device

25

Asset Catalogs

Media
Computing
GroupiPhone Application Programming

• Threads are one of several technologies for concurrency. In a non-concurrent app, only one thread
“main thread” starts and ends with the app’s main routine

• Concurrent apps starts with one thread and adds more as needed to create additional execution
paths independent of the main thread

• All user interface work must occur on the main thread. If you try to execute code on a different
thread results are unpredictable

• Thread creating and management is not trivial (e.g., Foundation’s NSThread)

• For example, because threads of an app share the same memory space, threads must coordinate,
or race conditions occur

• Apple encourages developers to migrate away from threads to newer technologies such as
operation objects and Grand Central Dispatch (GCD)

32

Threads
Threads are not scalable!

Threads are better fo
r code

that m
ust ru

n in real tim
e

Media
Computing
GroupiPhone Application Programming

• Threads can be associated with a run loop which process requests dynamically as
they arrive

• A thread enters a loop and uses it to run event handlers in response to
incoming events

• Your code provides the control statements (the while or for loop) that drives
the run loop

• Within your loop, a run loop object runs the event-processing code that
receives events and calls the installed handlers

• The run loop of your app’s main thread starts automatically. If you create other
threads, you must configure the run loop and start it manually

• Run loops receive events from two different types of sources

• Input sources deliver asynchronous events, e.g., msgs from another thread or
app

• Timer sources deliver synchronous events at a scheduled or repeating interval

33

Run Loops

Setting run loops involves threads.

Replace thread and run loop creation with

a single line of code by creating a serial

queue and dispatching tasks to it

Media
Computing
GroupiPhone Application Programming

• An asynchronous function does work behind the scenes to start a task running but returns
before that task completes

• Involves acquiring a background thread, starting the desired task on that thread, and then
sending a notification to the caller (a callback function) when the task is done

• Grand Central Dispatch (GCD) is one technology for starting tasks asynchronously

• Involves defining the tasks to execute and adding them to an appropriate dispatch queue

• Takes care of creating the needed threads and of scheduling your tasks to run on those
threads

• Operation queues are Objective-C objects that act very much like dispatch queues

34

Asynchronous Design Approach

Media
Computing
GroupiPhone Application Programming

• A dispatch queue executes tasks serially or concurrently in first-in, first-out order

• Dispatch queues scale well, better than sync. locks, cannot deadlock, better speed and energy,
simple API

• The tasks you submit to a dispatch queue must be encapsulated in a function or a closure

• Unlike dispatch queues NSOperationQueue execute tasks based on their dependencies not FIFO

• Tasks should be instances of NSOperation and use key-value observing (KVO) notifications for
monitoring the progress of a task

35

Dispatch Queue (GCD)

let queue:dispatch_queue_t = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0)

dispatch_apply(count, queue){i in
 print(i)
}

Media
Computing
GroupiPhone Application Programming

• Dispatch sources are used for processing specific types of system events asynchronously

• When a particular event occurs they submits a specific closure or function to a dispatch
queue

• Dispatch sources can monitor the following types of system events: timers, signal handlers,
descriptor-related events (files r/w related), process-related events, mach port events,
custom events that you trigger

36

Dispatch Sources (GCD)

Media
Computing
GroupiPhone Application Programming

• If you're accessing a remote resource (a server, or a file), accessing and processing data should be in a
background thread (not the main thread)

• The power of GCD is that it takes away a lot of the hassle of creating and working with multiple threads

• GCD creates a number of queues, and places tasks in those queues depending on how important you say
they are

• You can create your custom queues

• Four background queues that you can use, each has its own quality of service QoS level

• As a developer, you should categorise your app tasks based on quality of service (QoS) classes. This
ensures that your app is responsive and energy efficient

• The system uses QoS information to adjust priorities such as scheduling, CPU and I/O throughput, and
timer latency

37

Grand Central Dispatch

Media
Computing
GroupiPhone Application Programming38

Quality of Service
QoS Class Usage Focus Duration

User-interactive
Operating on the main thread,
refreshing the user interface, or
performing animations.

Responsiveness and
performance Virtually instantaneous

User-initiated
Opening a saved document or
performing an action when the user
clicks something in the user
interface

Responsiveness and
performance

Nearly instantaneous, such
as a few seconds or less

Utility
Downloading or importing data.
Utility tasks typically have a
progress bar that is visible to the
user

Balance between
responsiveness,
performance, and energy

A few seconds to a few
minutes.

Background Indexing, synchronizing, and
backups Energy Minutes or hours.

Media
Computing
GroupiPhone Application Programming

• dispatch_async() takes one parameter, then a closure to execute asynchronously. The
parameter it takes is which queue you want to use

• Two functions: dispatch_get_global_queue() asks for a queue with a particular quality of
service setting, and dispatch_get_main_queue() will use the main queue.

39

GCD and QoS Example

//background queue, USER_INITIATED (do not keep the user waiting)
dispatch_async(dispatch_get_global_queue(QOS_CLASS_USER_INITIATED, 0)) { [unowned self] in
 if let data = NSData(contentsOfURL: url) {
 //parse data
 }
 else {
 dispatch_async(dispatch_get_main_queue())
 { [unowned self] in
 let alert = UIAlertController(title: "Loading error", message: "There was a problem loading the data.",
preferredStyle: .Alert)
 alert.addAction(UIAlertAction(title: "OK", style: .Default, handler: nil))
 self.presentViewController(alert, animated: true, completion: nil)
 }//
 }
}

Media
Computing
GroupiPhone Application Programming

• Concurrency can improve the responsiveness of your code by ensuring that your main
thread is responsive to user events

• It can improve the efficiency of your code to execute in less time

• It make your app more energy efficient

• However, it also adds overhead and increases the overall complexity of your code (writing
and debugging)

• Done incorrectly, your app might become slower and less responsive

• I recommend reading Concurrency Programming Guide to be able to make the right
“concurrency” decision for your app

40

Is Concurrency Necessary?

https://developer.apple.com/library/prerelease/ios/documentation/General/Conceptual/ConcurrencyProgrammingGuide/ConcurrencyProgrammingGuide.pdf

Media
Computing
GroupiPhone Application Programming

MVC and Object-to-Object
Communication

41

Media
Computing
GroupiPhone Application Programming

• An iOS app is a collection of objets

• MVC design pattern defines (a) the roles of objects in an app, (b) how they communicate
with each other

• Reusable, extensible, adaptable for different devices with different screen sizes

• Cocoa Touch frameworks are based on MVC and require app custom objects to play
one of the MVC roles

42

MVC Design Pattern

Media
Computing
GroupiPhone Application Programming43

MVC
View ModelController

class RedBird:Bird
Attributes are properties let value =10
Behaviors/rules are methods func fly ()

Representation of the models
Event handling (responds to users

actions)

outlets

delegation or
target-action

Notification
or KVO

model instances

Interpret user actions and
communicate changes to models

Decides how model data is
displayed in the views

Each view controller is responsible
of one screen of views

Media
Computing
GroupiPhone Application Programming

• Model objects: data specific to an application and
define the logic to manipulate that data

• UI independent

• No explicit connection to the view objects

• Uses Notification or KVO to notify the controller of,
e.g., new data arriving from network

• Controller uses model instances to update them of
user actions in views, e.g., remove a data entry

44

Models

Notification
or KVO

model instances

Media
Computing
GroupiPhone Application Programming

• View objects: an object that users can see. It can
draw itself and respond to user actions

• No explicit connection to the model objects

• Send actions (blindly) to targets in the controller, e.g.,
a button was touched

• Use protocols to (blindly) synchronize with
controller by invoking a method on a delegate/data
source controller, e.g., the text view scroll position
value, or what is data in this table cell

45

Views

Notification
or KVO

model instances
view outlets

target-action
delegation

Media
Computing
GroupiPhone Application Programming

• Controller objects: mediate interaction between models and views

• In iOS each view controller is responsive for one screen of views

• Manages the presentation of views and the transition to any
subsequent view in the app

• Display modal views, respond to low-memory warnings, and rotate
views

• Interpret user actions and communicate changes to models

• Decides how model data is displayed in the views

• View controllers are typically the delegate or data source for many
types of framework objects

46

Controllers

Notification
or KVO

model instances
view outlets

target-action
delegation

Media
Computing
GroupiPhone Application Programming

• When an event occurs, an object posts notification
in a broadcasting fashion (doesn't know who
wants it)

• An object (observer) registers itself to receive a
notification (by name) for some event

• The observer implements a function to respond to
the event

• The observer should remove itself if it’s no longer
listening for notifications (deinit, called when the
object will dealloc)

• Application notifications are NOT push
notifcations

47

Notifications
Notification name

Observer 1

Observer 2
Posting object

//Registering for a notification
NSNotificationCenter.defaultCenter().addObserver
(self, selector: "reactToShakeEvent", name:
mySpecialNotificationKey, object: nil)

//Reacting
func reactToShakeEvent(notif:NSNotification) {
print("I receive a notification called \
(notif.name), from \(notif.object), with user
info of length \(notif.userInfo?.count)")

}

https://developer.apple.com/notifications/

Media
Computing
GroupiPhone Application Programming

• Posting a notification requires defining a unique global string constant with the
notification name

• Should be added to the location that receives the event of interest, e.g.,
applicationWillEnterForeground

48

Using Notifications

//Posting a notification
//Notification ahem on a global scope
let mySpecialNotificationKey = "CLKshakeEvent"

NSNotificationCenter.defaultCenter().postNotificationName(mySpecialNotificationKey,
object:self) //self (this class instance) is the one posting

Media
Computing
GroupiPhone Application Programming

• Registration for a notification requires the notification name

• selector is name of function that will be called

• object is the one posting the notification

• If notification name is nil, the notification center notifies the
observer (self) of all notifications with an object matching
object

• If object is nil, the notification center notifies the observer
of all notifications with the same notification name

• The observer should implement the selector, which
takes 0 or 1 argument of type NSNotification with

• notification name; posting object; and userInfo
(dictionary with additional relevant objects; can be nil)

49

Using Notifications
//Posting a notification
//Notification ahem on a global scope
let mySpecialNotificationKey = "CLKshakeEvent"

NSNotificationCenter.defaultCenter().postNotific
ationName(mySpecialNotificationKey, object:self)
//self (this class instance) is the one posting

//Registering for a notification
NSNotificationCenter.defaultCenter().addObserver
(self, selector: "reactToShakeEvent", name:
mySpecialNotificationKey, object: nil)

//Reacting
func reactToShakeEvent(notif:NSNotification) {
print("I receive a notification called \
(notif.name), from \(notif.object), with user
info of length \(notif.userInfo?.count)")

}

Media
Computing
GroupiPhone Application Programming

• The observer should remove itself if it’s
no longer listening for notifications

• When the observer is no longer
referenced and thus deallocated from
memory (in deinit)

• When a notification is no longer
relevant for an observer (you can put
the same .removeObserver line
anywhere in your code)

50

Using Notifications
//Posting a notification
//Notification ahem on a global scope
let mySpecialNotificationKey = "CLKshakeEvent"

NSNotificationCenter.defaultCenter().postNotific
ationName(mySpecialNotificationKey, object:self)
//self (this class instance) is the one posting

//Registering for a notification
NSNotificationCenter.defaultCenter().addObserver
(self, selector: "reactToShakeEvent", name:
mySpecialNotificationKey, object: nil)

//Reacting
func reactToShakeEvent(notif:NSNotification) {
print("I receive a notification called \
(notif.name), from \(notif.object), with user
info of length \(notif.userInfo?.count)")

}

deinit {

NSNotificationCenter.defaultCenter().removeObserver(self)
}

Media
Computing
GroupiPhone Application Programming

• Similar to notifications, delegation allows the delegate (observer) to respond to events
on behalf of the delegator (posting object)

• Instead of registering for notifications, the delegate has to assign itself as the delegator’s
delegate and declare that will implement the required methods (conform to protocol)

• The delegator keeps a reference to the delegate and sends messages I did handle or
will handle or should handle this event

• The main value of delegation is that it allows you to easily customize the behavior of
several objects in one central object

• A delegate can be a data source for the delegator and respond to requests of data

51

Delegation

Delegator
.delegate =

Object Delegator
Protocol

adopt Delegate

Media
Computing
GroupiPhone Application Programming

• KVO is another mechanism from object-to-object combination, especially Model →
Controller

• The observed object should inherit from NSObject. The observed property should be
dynamic, e.g., dynamic var myDate = NSDate()

• The observing object should add itself as an observe for the property
addObserver(_:forKeyPath:options:context), override
observeValueForKeyPath. When done observing, remove the observer
removeObserver(_:forKeyPath:context), e.g., in deinint

52

KVO

Media
Computing
GroupiPhone Application Programming53

ViewController: WKNavigationDelegate
var webView: WKWebView!
Delegation
func webView(webView: WKWebView,
didFinishNavigation navigation: WKNavigation!) {
 title = webView.title
 }

KVO
 webView.addObserver(self, forKeyPath:
"estimatedProgress", options: .New, context: nil)
override func observeValueForKeyPath(keyPath:
String?, ofObject object: AnyObject?, change:
[String : AnyObject]?, context:
UnsafeMutablePointer<Void>) {
 if keyPath == "estimatedProgress" {
 progressView.progress =
Float(webView.estimatedProgress) }}
webView.removeObserver(self, forKeyPath:
“estimatedProgress")

Target-action
navigationItem.rightBarButtonItem =
UIBarButtonItem(barButtonSystemItem: .Refresh,
target: webView, action: "reload")

WKWebView
var estimatedProgress: Double

WKNavigationDelegate

optional func webView(_ webView:
WKWebView,
 didFinishNavigation navigation:
WKNavigation!)

Media
Computing
GroupiPhone Application Programming

• The slides and playgrounds from this lecture will be uploaded to our website

• This week’s reading assignment will be on the website today

• Come to the lab next week 30.11.2015 at 14:15 to catch up on some topics (it will be on
iTune U)

• Next week we’ll talk about UI Design principles and View and Navigation Controllers

54

Next Time

